ITERFAMIEA

* @ @ é K l* é Introduction to Computing Systems

University of Science and Technolog yofChma (C51002A03)

Data Structures

B el . LW R e -

PRIRfL

cjuns@ustc.edu.cn
2023 Fall

HEMELHE KFR

School of Computer Science and Technology

Outline

Review

Subroutines

Control Instructions for Subroutines

Memory Model for Program Execution

The Stack

Implementing Functions in C

Outline

Review

Subroutines

Control Instructions for Subroutines

Memory Model for Program Execution

The Stack

n Implementing Functions in C

A C program that uses a function to print a banner message

1 #include <stdio.h>

2

3 void PrintBanner() ; // Function declaration
4

5 int main(void)

6 {

7 PrintBanner(); // Function call

8 printf ("A simple C program.\n") ;

9 PrintBanner () ;

10 }

11

12 void PrintBanner () // Function definition
13 {

14 printf (" \n") ;

Y
on
[—y

Function in C

B Smaller, simpler, subcomponent of program
® Provides abstraction
®hide low-level details

®give high-level structure to programmer, easier to understand overall

program flow
® enables separable, independent development
m C functions
® zero or multiple arguments passed in
® single result returned (optional)
® return value is always a particular type

mIn other languages, called procedures, subroutines, methods ...

14-5

Example of High-Level Structure

main ()

{
SetupBoard() ; /* place pieces on board */
DetermineSides(); /* choose black/white */

/* Play game */

do {
GRS Structure of program is evident, even
BlacksTurn() ; without knowing implementation.

} while (NoOutcomeYet()):;

14-6

Functions in C

double ValuelInDollars (double amount, double rate);

- .
declaration

main ()

{

//,function call (invocation)

dollars = ValuelInDollars(francs, DOLLARS PER FRANC) ;

printf ("$f francs equals %f dollars.\n", francs, dollars);

~—definition
double ValuelInDollars (double amount, double rate)
{

return amount * rate;

14-7

Functions in C

B Function Declaration (also called prototype)

int Factorial (int n) ;

/ N N\

type of name of types of all
return value function arguments

B Function Call -- used in expression

a = x + Factorial(f + qg);

-

1. evaluate arguments

2. execute function

3. use return value in expression

14-8

Function Definition

m Return type, function name, types of arguments
O®must match function declaration

®give name to each argument (doesn't have to match declaration)

lint Factorial (int n)
{
int 1i;
int result = 1;
for (i = 1; i <= n; i++)
result *= i;

) gives control back to calling
return result; function and returns value

14-9

Implementing Functions in C

BFunctions in C are the high-level equivalent of subroutines at the LC-3
machine level.

BFunctions in C are implemented using a similar set of mechanisms as
assembly level subroutines.

mThere are four basic phases in the execution of a function call:

® (1) argument values from the caller are passed to the callee

® (2) control is transferred to the callee,

JSR/JSRR

® (3) the callee executes its task
® (4) control is passed back to the caller, along with a return value.

mWe will examine how all of this is accomplished on the LC-3.

Storage Requirements

B Code must be stored in memory so that we é/tmain I{gogram
nt a = ;
can execute the function. Int b = 20;

Int ¢ = foo(a, b);
B Parameters must be sent from the caller to
Int foo(int x, int y)

the callee so that the function receives them. {

. . Int z;
m Local/global variables for the function must 2= x + v
be stored somewhere, is one copy enough? return z;

}

B Return address must be stored so that

B What needs to be stored?
control can be returned to the caller.

® Code, parameters,
B Return values must be sent from the callee

) local/global variables,
to the caller, that’ s how results are returned.
return address/values

2023/12/10 "

Possible Solution: Mixed Code and Data

B Function implementation:

// main program foo BR foo begin ;skip over data
Int a = 10; ; Memory allocation
Int b = 20; foo rv .BLKW 1 ;return value
Int ¢ = foo(a, b); foo ra .BLKW 1 ;return address
foo paramx .BLKW 1 ; ‘x’ parameter
Int foo(int x, IRt y) foo paramy .BLKW 1 ; 'y’ parameter
{ < | foo _localz .BLKW 1 ; 'z’ local wvariable

Int z;

‘ foo begin ST R7, foo_ra ;save return

z= X + y;
return z; e
} LD R7, foo ra ;restore return
RET
.
m Calling sequence ST Rl, foo paramx ; Rl has ‘x’
ST R2, foo_ paramy ; R2 has ‘y’
JSR foo ; Function call
LD R3, foo rv ; R3 = return value

2023/12/10 12

Possible Solution: Mixed Code and Data

m Advantages:
® Code and data are close together
® Conceptually easy to understand, code generation is relatively simple
O®Minimizes register usage for variables
®Data persists through life of program
® Few instructions are spent moving data
m Disadvantages:
® Code is vulnerable to self-modification
® Cannot handle recursion or parallel execution

® Consumes resource for inactive functions

2023/12/10 13

Possible Solution: Separate Code and Data

B Memory allocation

// main program ; Code for foo() and bar() are somewhere else
Int a = 10;
Int b = 20; foo rv .BLKW 1 ; foo return value
Int ¢ = foo(a,b); foo ra .BLKW 1 ; foo return address
foo paramx .BLKW 1 ; foo 'x’ parameter
Int foo(int x,int y) foo paramy .BLKW 1 ; foo ‘y’ parameter
{ foo localz .BLKW 1 ; foo ‘'z’ local
Int z;
z= x+y; bar rv .BLKW 1 ; bar return value
return z; bar ra .BLKW 1 ; bar return address
} bar paramw .BLKW 1 ; bar ‘w’ parameter

B Function code call is similar to mixed solution

2023/12/10 14

Possible Solution: Separate Code and Data

m Advantages:
®Code can be marked ‘read only’
® Conceptually easy to understand
®Early Fortran used this scheme
®Data persists through life of program
m Disadvantages:
® Cannot handle recursion or parallel execution

® Consumes resource for inactive functions

2023/12/10

15

Run-time Stack Requirements

m Consider what has to happen in a function call:
®Caller must pass parameters to the callee.
®Caller must transfer control to the callee.
®Caller must allocate space for the return value.
®Caller must save the return address.
®Callee requires space for local variables.
®Callee must return control to the caller.
B Parameters, return value, return address, and locals are stored on the stack.

B The order above determines the responsibility and order of stack operations.

2023/12/10 16

Run-time Stack

B What is a Run-time Stack?
®First In, Last Out (FILO) data structure
® PUSH adds data, POP removes data
® Overflow condition: push when stack full
® Underflow condition: pop when stack empty
® Stack grows and shrinks as data is added and removed
® Stack grows downward from the end of memory space
® Function calls allocate a stack frame
® Return cleans up by freeing the stack frame
® Corresponds nicely to nested function calls

® Stack Trace shows current execution (Java/Eclipse)

2023/12/10 17

Run-time Stack : Stack frame (or activation record)

m Definition: A stack frame or activation record is the memory required for a function

call:
®Stack frame below contains the function that called this function.
®Stack frame above contains the functions called from this function.
®Caller pushes parameters.

®Callee allocates the return value, saves the return address,

allocates/frees local variables, and stores the return wvalue.
®Most offsets are small, this explains LDR/STR implementation.
®Base register stores pointer, signed Parameters offset accesses both

directions.

2023/12/10 18

Run-time Stack : Stack frame

mEach function has a memory template where it stores its local variables, some
bookkeeping information, and its parameter variables .This template is called its

stack frame or activation record.

B Whenever a function is called, its stack frame will be allocated somewhere in

memory.

mBecause the calling pattern of functions naturally follows a stack-like pattern, this

allocation and deallocation will follow the pushes and pops of a stack.

2023/12/10 19

Run-time Stack : Stack Pointers(SP/R6) and Frame Pointers(FP/R5)

m Clearly we need a variable to store the stack pointer (SP), LC3 assembly uses R6.

®Stack execution is ubiquitous, so hardware has a stack pointer,

sometimes even instructions.

®Problem: stack pointer is difficult to use to access data, since it

moves around constantly.
m Solution: allocate another variable called a frame pointer (FP), LC3 assembly uses R5.

®Where should frame pointer point? Our convention sets it to point to

the first local wvariable.

2023/12/10 20

Run-time Stack

mIn the previous solutions, the compiler allocated parameters and locals in fixed

memory locations.

B Using an Run-time Stack means parameters and locals are constantly moving

around.
B The frame pointer solves this problem by using fixed offsets instead of addresses.

B The compiler can generate code using offsets, without knowing where the stack

frame will reside.

B Frame pointer needs to be saved and restored around function calls. How about the

stack pointer?

2023/12/10 21

Implementing Functions in C Using a Run-Time Stack

m Activation record

®information about each function, including arguments and local

variables

®stored on run-time stack

Calling function Called function

1. push new activation record

copy values into argument — 1. execute code
call function.———””””S”” 2. put result in activation

record

3. pop activation record
from stack

4. return

wnN

4. get result from stack —

2023/12/10 22

Run-Time Stack

Stack pointer (R6) Memory Memory Memory

points to the
beginning of a region

of memory that stores R6 «—— RG6
local variables for the

current function.) main main main

— R6
That region of
memory is called

an activation
record

Recall that local

variables are stored When a new function is
on the run-time stack called, its activation record
is pushed on the stack;
z when it returns its
Before Ca” Durlng Ca” After Ca” activation record is

popped off of the stack.

Note: Using R6 this way is incompatible with storing interrupt state on the stack.

2023/12/10 23

Activation Record

1

int NoName (int a, int b) b el
® always first word in
{ activation record b kk - R |
. n mnyv
int w, X, y; ® holds value returned by OOKkkeep g etu alue
function Return address
® allocated even if function Dynamic link
does not return a value a argS
B Return address b
return Yy ® save pointer to next W
4
instruction in calling
} _ locals X
function
— ® convenient location to .
Name Type Offset SCOpe store R7 in case another
function (JSR) is called
a int 3 NoName ®m Dynamic link
b int 4 NoName ® address of previous
w int 5 NoName activation record
X int 6 NoName ® used to pop this
\'4 int 7 NoName activation record from
stack

2023/12/10 24

Calling the Function

b = NoName (a, 10);

; store a to 1lst argument
LDR RO, R6, #3
STR RO, R6, #8

; store 10 to 2nd argument
AND RO, RO, #0
ADD RO, RO, #10
STR RO, R6, #9

; store R6 into dynamic link
STR R6, R6, #7

; move R6 to start of new record
ADD R6, R6, #5

; call subroutine

JSR NoName

x3F00

13

x4100

13

10

return val
return addr
dyn link

a

b

return val
return addr
dyn link

< X s TO

Note: Caller needs to know number and type of arguments, doesn't know about local

variables.
2023/12/10

25

Starting the Callee Function

.
7

2023/12/10

store return address
STR R7, R6, #1

x4100

x3F00

13

BE.

x3100

x4100

13

10

return val
return addr
dyn link

a

b

return val
return addr
dyn link

a

< X = T

26

Ending the Callee Function

2023/12/10

return y;

Noe

7

.
7

copy Y into return value
LDR RO, R6, #7
STR RO, R6, #0

load the return address

LDR R7, R6, #1

; load the dynamic link

(pops the activation record)

ILDR R6, R6, #2

return control to caller

RET

x4100

x3F00

13

RE_—=

40

x3100

x4100

13

10

20

30

40

return val
return addr
dyn link

a

b

return val
return addr
dyn link

a

b
w
X
y

27

Resuming the Caller Function

b = NoName (a,10); %4100 return val
R6/ <x3F00 | returnaddr
dyn link
; load return wvalue ay
LDR RO, R6, #5 Zg ’
; store result into b T]

STR RO, R6, #4

2023/12/10 28

Example: LC-3 Code for ToUpper

/* Function ToUpper: ToUpper STR R7, R6, #1 ; save return addr
* If the argument is lower case, LDR RO, R6, #3 ; load parameter (inchar)
* i ASCII 1 *
return 1ts upper case value */ STR RO, R6, #4 ; initialize outchar
LD R1 ;1 -'a'
char ToUpper (char inchar) r neg_a cad -'a
(ADD R1l, RO, R1 ; inchar - 'a'
int outchar = inchar; BRn FALSE ; br if inchar < 'a'
LD Rl, neg z ; load -'z'
if ('a' <= inchar && inchar <= 'z') ADD R1l, RO, R1 ; inchar - 'z'
outchar = inchar - ('a' - 'A'"); BRp FALSE ; br if inchar > 'z'
LD R1l, neg upper ; load -('a' - 'A'")
return outchar; .
ADD RO, RO, R1 ; inchar - ('a' - 'A'")
}
STR RO, R6, #4 ; store to outchar
FALSE ILDR RO, R6, #4 ; load outchar
STR RO, R6, #0 ; store in result
m Compile this function to LC-3 assembly LDR R7, R6, #1 ; load return address
language. LDR R6, R6, #2 ; load dynamic link
RET

14-29

Run-time Stack: Stack frame

m Consider what has to happen in a function call:
®Caller must pass parameters to the callee.
®Caller must transfer control to the callee.
®Caller need to allocate space for the return value.
®Caller need to save the return address.
®Callee requires space for local variables.
®Callee must return control to the caller.
®Callee need to save the frame pointer of the caller

B So, parameters, return value, return address, frame pointer, and local variables are
stored on the stack.

2023/12/10 30

Run-time Stack: stack-like nature of function calls

21

{

int w;

w = Volt(w,

return w;

int Volt(int q;
{
int k;
int m;

return k;

10) ;

int r)

// Watt calls Volt

(a) Run-time stack
when execution starts

«<—R6

Watt | oo

main

(d) After Vo1t completes

Figure 14.5

(b) When Watt executes

«<—R6

main -

(e) After Watt completes

Figure 14.4 executes.

—
1l int main(void)
2 1 x0000 Memory
3 int a;
4 int b;
5 l«—R6
6 . Volt RS
7 b = Watt(a); // main calls Watt first ~—R6
8 b = Volt(a, b); // then calls Volt Watt e Rs Watt
9} «—R6
10 main < RS main main
11 int Watt(int a)
XFFFF

(c) When Vo1t executes

l«—R6

Volt | oo

main

(fy When Vo1t executes

Several snapshots of the run-time stack while the program outlined in

Run-time Stack: frame pointer & stack pointer

B We need some easy way to access the data in each

function’ s stack frame and also to manage the

pushing and popping of stack frames.

Hm For this, we will use R5 and R6.

® R5 points
the stack
may point
variables
function.
(FP) .

® R6 always

stack. We

2023/12/10

to some internal location within
frame at the top of the stack—it
to the base of the local

for the currently executing

We call it the frame pointer

points to the very top of the

call it the stack pointer (SP).

x0000

Memory
«—R6
main e R5
XFFFF
(a) Run-time stack
when execution starts
«—R6
Watt e R5
main
(d) After Vo1t completes
Figure 14.5

l«—R6

Watt

*—R5

main

(b) When Watt executes

«—R6

main

+=—R5

(e) After Watt completes

Figure 14.4 executes.

Volt

*—R5

Watt

main

(c) When Vo1t executes

Volt

main

() When Vo1t executes

Several snapshots of the run-time stack while the program outlined in

32

Real Solution: Run-time Stack

B Instead of allocating the space for local variables statically (i.e., in a fixed place in memory), the space is allocated once the function
starts executing.

B When the function returns to the caller, its space is reclaimed to be assigned later to another function.

m If the function is called from itself, the new invocation of the function will get its own space that is distinct from its other currently
active invocations.

B The simple part
® At the assembly level, a function is Jjust a sequence of instructions that is called using a JSR instruction.
® The RET instruction returns control back to the caller.
B The stickier issues
® how arguments are passed
® how the return value is returned,
® and the allocation of local variables.

B The solution to these issues involves : the run-time stack.

B We need a way to “activate” a function when it is called. That is, when a function starts executing, its local variables must be allocated
somewhere in memory. There are many possible solutions, and here we' |l explore two options.

2023/12/10 33

Run-time Stack: Stack frame

stack frame
points to the
base of the
local
variables for
the currently
executing
function.

2023/12/10

x0000
R6 —» m
R5 —» K
Watt’s frame pointer
Return address for Watt
Return value to Watt
q (value of w)
r (10)
W
main’s frame pointer
Return address formain
Return value tomain
a
xFFFF
Figure 14.7

Local variables

Bookkeeping

info Stack frame

forVolt

Parameters

Stack frame
forWatt

The run-time stack after the stack frame for Vo1t is pushed onto the

stack.

34

Run-time Stack: Stack frame

W

OO NOYYOTR WMN K

2023/12/10

= Volt(w, 10);

AND RO,
ADD RO,
ADD R6,
STR RO,

LDR RO,
ADD R6,

STR RO,
JSR Volt

RO, #0 ; ROK- 0

RO, #¥10 ; RO <- 10

R6, #-1 ;

R6, ##0 ; Push 10 onto stack

R5, #0 ; Load w
R6, #-1 ;
R6, #0 ; Push w

x0000

R6 —»

R5 —»

xFFFF

Memory

value of W

10

W

Parameters
forVolt

Local variable
of Watt

35

Run-time Stack: Stack frame

1
2
3
4
5
6
7
8
9
0

1

OCoOoONOYOTHWN -

2023/12/10

Volt: ADD R6,

ADD R6,
STR R7,

ADD R6,
STR R5,

ADD R5,
ADD R6,

LDR RO,
STR RO,

ADD R6,

LDR RS,
ADD R6,

LDR R7,

ADD R6,
RET

R6, -1

R6, -1
R6, #0

R6, -1
R6, {0

R6, -1
R6, -2

R5, #0
R5, i3
R5, {1

R6, {0
R6, #1

R6, #0
R6, #1

m

k

Watt’s frame pointer

Return address for Watt

Return value to Watt

q (value of w)

r (10)

W

main’s frame pointer

Return address formain

Return value tomain

a

; Allocate spot for the return value x0000
; Push R7 (Return address) R6 —
H RS —»
; Push R5 (Caller's frame pointer)
; Set frame pointer for Volt
; Allocate memory for Volt's local variables
; Load Tocal variable k
; Write it in return value slot, which will always
; be at Tocation R6 + 3
; Pop local variables
; Pop the frame pointer
; Pop the return address
xFFFF
Figure 14.7

Local variables

Bookkeeping
info

Parameters

Stack frame
forVolt

Stack frame
forWatt

The run-time stack after the stack frame for Vo1t is pushed onto the

stack.

36

Run-time Stack: Stack frame

x0000
e i Local variabl A
RE) ocal variables
Watt’s frame pointer Bookkeeping
info Stack frame
1 JSR Volt Return address for Watt for Volt
2 LDR RO, R6, {0 ; Load the return value Return value to Watt
3 STR RO, R5, #0 ; w=Volt(w, 10);
q (value of w)
4 ADD R6, R6, {1 ; Pop return value Parameters
5 r (10) oy
6 ADD R6, R6, #2 ; Pop arguments W
main’s frame pointer
Stack frame
Return address formain forWatt
Return value to main
a_ Y
XFFFF

Figure 14.7 The run-time stack after the stack frame for Vo1t is pushed onto the
stack.

2023/12/10 37

int myadd(int x, int y) { -globl> _myadd -globl> _add2 Al
return +y; _myadd: _add2: —add3:

} sub>sp. sp c) S sub

int addi(int x, int y) {
return myadd(x, y);

h

int add2(int x, int
alie 72 2 &
return myadd(x, vy) y4
} .globl> _a e st
_addl: S8 3 Ldut
int add3(int x, int vy Sp, Sp w8 Ldur
e Z = &F 29 g
int w :
int v = 4;
return myadd(x, vy)

h

2023/12/10 39

{

14.7 Following is the code for a C function named Bump. x0000
int Bump(int x) il
R6 — n A
Local variables
int a; R5 — .
a = X +]_ 3 Watt’s frame pointer Bookkeeping
re t ST Return address for Watt info S;z:)crlilfga]zr:e
Return value to Watt
g (value of) Parameters
Draw the stack frame for Bump. r (10) R S
Write one of the following in each entry of the stack frame to W
indicate what is stored there. main’s frame pointer .
ack frame
(1) Local variable Return address for main forWatt
(2) Argument Return value tomain i
(3) Address of an instruction a ... Y ______
(4) Address of data
(5) Other XFFFF

2023/12/10

Some Of the entries in the Stack frame for B ump are Written by the Figure 14.7 The run-time stack after the stack frame for Vo1t is pushed onto the
.) . . tack.

function that calls Bump; some are written by Bump itself. Identify e

the entries written by Bump.

40

14.15 The following C program is compiled into LC-3 machine language and ffinclude <stdio.h>

loaded into address x3000 before execution. Not counting the JSRs to 1 EE ;E 1 EE ;‘;ﬂg; it ¥, Nt 2)

librar‘y routines for I/O, the object code contains three JSRs (one to int h(int argl, int arg2);
function f, one to g, and one to h). Suppose the addresses of the three
JSR instructions are x3102, x3301, and x3304. Also suppose the user Ent main(void)

provides 4 5 6 as input values. Draw a picture of the run-time stack,

g . " ’) int a, b, ¢:
providing the contents of locations, if possible, when the program is

about to return from function f. Assume the base of the run-time stack printf(“Type three numbers: ");
is location XEFFF. Scanf("%d %d %d", &a, &b, &C);
printf("%d"”, f(a, b, ¢c));
x0000 :}
R6 > I int POREX, LRItz
RS . Local variables {: .
int x1;
Watt’s frame pointer Bookkeeping
Return address for Watt info St;?;g?r:e x1l = g (x) :
Return value to Watt return h(y, z) * x1;
k! (value of w) Parameters }
r w Y
W int g(int arg)
main’s frame pointer Stack {: %
ack frame :
Return address formain forWatt return arg arg;
Return value tomain }
e I int h(int argl, int arg2)
{
XFFEF return argl / arg?2;
Figure 14.7 The run-time stack after the stack frame for Vo1t is pushed onto the }

stack.

2023/12/10 41

