
陈俊仕
cjuns@ustc.edu.cn

2023 Fall

计算机科学与技术学院
School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（CS1002A.03)

Chapter 8
Data Structures

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

A C program that uses a function to print a banner message

1 #include <stdio.h>

2

3 void PrintBanner(); // Function declaration

4

5 int main(void)

6 {

7 PrintBanner(); // Function call

8 printf("A simple C program.\n");

9 PrintBanner();

10 }

11

12 void PrintBanner() // Function definition

13 {

14 printf("============================\n");

15 }

14-5

Function in C

nSmaller, simpler, subcomponent of program

nProvides abstraction

lhide low-level details

lgive high-level structure to programmer, easier to understand overall

program flow

lenables separable, independent development

nC functions

lzero or multiple arguments passed in

lsingle result returned (optional)

lreturn value is always a particular type

n In other languages, called procedures, subroutines, methods ...

14-6

Example of High-Level Structure

main()

{

SetupBoard(); /* place pieces on board */

DetermineSides(); /* choose black/white */

/* Play game */

do {

WhitesTurn();

BlacksTurn();

} while (NoOutcomeYet());

}

Structure of program is evident, even
without knowing implementation.

14-7

Functions in C

double ValueInDollars(double amount, double rate);

main()

{

...

dollars = ValueInDollars(francs, DOLLARS_PER_FRANC);

printf("%f francs equals %f dollars.\n", francs, dollars);

...

}

double ValueInDollars(double amount, double rate)

{

return amount * rate;

}

declaration

function call (invocation)

definition

14-8

Functions in C

nFunction Declaration (also called prototype)

int Factorial(int n);

nFunction Call -- used in expression

a = x + Factorial(f + g);

type of
return value

name of
function

types of all
arguments

1. evaluate arguments

2. execute function

3. use return value in expression

14-9

Function Definition

nReturn type, function name, types of arguments

lmust match function declaration

lgive name to each argument (doesn't have to match declaration)

int Factorial(int n)
{
int i;
int result = 1;
for (i = 1; i <= n; i++)
result *= i;

return result;
}

gives control back to calling
function and returns value

Implementing Functions in C

nFunctions in C are the high-level equivalent of subroutines at the LC-3

machine level.

nFunctions in C are implemented using a similar set of mechanisms as

assembly level subroutines.

nThere are four basic phases in the execution of a function call:

l(1) argument values from the caller are passed to the callee

l(2) control is transferred to the callee, ————JSR/JSRR

l(3) the callee executes its task

l(4) control is passed back to the caller, along with a return value.

nWe will examine how all of this is accomplished on the LC-3.

Storage Requirements

nCode must be stored in memory so that we

can execute the function.

nParameters must be sent from the caller to

the callee so that the function receives them.

nLocal/global variables for the function must

be stored somewhere, is one copy enough?

nReturn address must be stored so that

control can be returned to the caller.

nReturn values must be sent from the callee

to the caller, that’s how results are returned.

2023/12/10 11

// main program
Int a = 10;
Int b = 20;
Int c = foo(a, b);

Int foo(int x, int y)
{

Int z;
z= x + y;
return z;

}

nWhat needs to be stored?

lCode, parameters,

local/global variables,

return address/values

Possible Solution: Mixed Code and Data

nFunction implementation:

nCalling sequence

2023/12/10 12

foo BR foo_begin ;skip over data
; Memory allocation
foo_rv .BLKW 1 ;return value
foo_ra .BLKW 1 ;return address
foo_paramx .BLKW 1 ;‘x’ parameter
foo_paramy .BLKW 1 ;‘y’ parameter
foo_localz .BLKW 1 ;‘z’ local variable

foo_begin ST R7, foo_ra ;save return
…
LD R7, foo_ra ;restore return
RET

// main program
Int a = 10;
Int b = 20;
Int c = foo(a, b);

Int foo(int x, int y)
{

Int z;
z= x + y;
return z;

}

ST R1, foo_paramx ; R1 has ‘x’
ST R2, foo_paramy ; R2 has ‘y’
JSR foo ; Function call
LD R3, foo_rv ; R3 = return value

Possible Solution: Mixed Code and Data

nAdvantages:

lCode and data are close together

lConceptually easy to understand, code generation is relatively simple

lMinimizes register usage for variables

lData persists through life of program

lFew instructions are spent moving data

nDisadvantages:

lCode is vulnerable to self-modification

lCannot handle recursion or parallel execution

lConsumes resource for inactive functions

2023/12/10 13

Possible Solution: Separate Code and Data

nMemory allocation

nFunction code call is similar to mixed solution

2023/12/10 14

; Code for foo() and bar() are somewhere else

foo_rv .BLKW 1 ; foo return value
foo_ra .BLKW 1 ; foo return address
foo_paramx .BLKW 1 ; foo ‘x’ parameter
foo_paramy .BLKW 1 ; foo ‘y’ parameter
foo_localz .BLKW 1 ; foo ‘z’ local

bar_rv .BLKW 1 ; bar return value
bar_ra .BLKW 1 ; bar return address
bar_paramw .BLKW 1 ; bar ‘w’ parameter

// main program
Int a = 10;
Int b = 20;
Int c = foo(a,b);

Int foo(int x,int y)
{

Int z;
z= x+y;
return z;

}

Possible Solution: Separate Code and Data

nAdvantages:

lCode can be marked ‘read only’

lConceptually easy to understand

lEarly Fortran used this scheme

lData persists through life of program

nDisadvantages:

lCannot handle recursion or parallel execution

lConsumes resource for inactive functions

2023/12/10 15

Run-time Stack Requirements

nConsider what has to happen in a function call:

lCaller must pass parameters to the callee.

lCaller must transfer control to the callee.

lCaller must allocate space for the return value.

lCaller must save the return address.

lCallee requires space for local variables.

lCallee must return control to the caller.

nParameters, return value, return address, and locals are stored on the stack.

nThe order above determines the responsibility and order of stack operations.

2023/12/10 16

Run-time Stack

nWhat is a Run-time Stack?

lFirst In, Last Out (FILO) data structure

lPUSH adds data, POP removes data

lOverflow condition: push when stack full

lUnderflow condition: pop when stack empty

lStack grows and shrinks as data is added and removed

lStack grows downward from the end of memory space

lFunction calls allocate a stack frame

lReturn cleans up by freeing the stack frame

lCorresponds nicely to nested function calls

lStack Trace shows current execution (Java/Eclipse)

2023/12/10 17

Run-time Stack：Stack frame (or activation record)

nDefinition: A stack frame or activation record is the memory required for a function

call:

lStack frame below contains the function that called this function.

lStack frame above contains the functions called from this function.

lCaller pushes parameters.

lCallee allocates the return value, saves the return address,

allocates/frees local variables, and stores the return value.

lMost offsets are small, this explains LDR/STR implementation.

lBase register stores pointer, signed Parameters offset accesses both

directions.

2023/12/10 18

Run-time Stack：Stack frame

nEach function has a memory template where it stores its local variables, some

bookkeeping information, and its parameter variables .This template is called its

stack frame or activation record.

nWhenever a function is called, its stack frame will be allocated somewhere in

memory.

nBecause the calling pattern of functions naturally follows a stack-like pattern, this

allocation and deallocation will follow the pushes and pops of a stack.

2023/12/10 19

Run-time Stack：Stack Pointers(SP/R6) and Frame Pointers(FP/R5)

nClearly we need a variable to store the stack pointer (SP), LC3 assembly uses R6.

lStack execution is ubiquitous, so hardware has a stack pointer,

sometimes even instructions.

lProblem: stack pointer is difficult to use to access data, since it

moves around constantly.

nSolution: allocate another variable called a frame pointer (FP), LC3 assembly uses R5.

lWhere should frame pointer point? Our convention sets it to point to

the first local variable.

2023/12/10 20

Run-time Stack

n In the previous solutions, the compiler allocated parameters and locals in fixed

memory locations.

nUsing an Run-time Stack means parameters and locals are constantly moving

around.

nThe frame pointer solves this problem by using fixed offsets instead of addresses.

nThe compiler can generate code using offsets, without knowing where the stack

frame will reside.

nFrame pointer needs to be saved and restored around function calls. How about the

stack pointer?

2023/12/10 21

2023/12/10 22

Implementing Functions in C Using a Run-Time Stack

nActivation record

linformation about each function, including arguments and local

variables

lstored on run-time stack

Calling function

1. push new activation record
2. copy values into arguments
3. call function

4. get result from stack

Called function

1. execute code
2. put result in activation

record
3. pop activation record

from stack
4. return

2023/12/10 23

Run-Time Stack

main

Memory

R6
main

Memory

R6

main

Memory

R6

NoName

Before call During call After call

Note: Using R6 this way is incompatible with storing interrupt state on the stack.

Stack pointer (R6)
points to the
beginning of a region
of memory that stores
local variables for the
current function.

That region of
memory is called
an activation
record

Recall that local
variables are stored
on the run-time stack

When a new function is
called, its activation record
is pushed on the stack;
when it returns its
activation record is
popped off of the stack.

2023/12/10 24

Activation Record

int NoName(int a, int b)

{

int w, x, y;

.

.

.

return y;

}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

3
4
5
6
7

NoName
NoName
NoName
NoName
NoName

Return value
Return address

Dynamic link
a
b
w
x
y

bookkeeping

locals

args

n Return value

l always first word in

activation record

l holds value returned by

function

l allocated even if function

does not return a value

n Return address

l save pointer to next

instruction in calling

function

l convenient location to

store R7 in case another

function (JSR) is called

n Dynamic link

l address of previous

activation record

l used to pop this

activation record from

stack

2023/12/10 25

Calling the Function

b = NoName(a, 10);

; store a to 1st argument

LDR R0, R6, #3

STR R0, R6, #8

; store 10 to 2nd argument

AND R0, R0, #0

ADD R0, R0, #10

STR R0, R6, #9

; store R6 into dynamic link

STR R6, R6, #7

; move R6 to start of new record

ADD R6, R6, #5

; call subroutine

JSR NoName

return val
return addr
dyn link
a
b
return val
return addr
dyn link
a
b
w
x
y

x3F00

13

x4100
13
10

x4100

R6

Note: Caller needs to know number and type of arguments, doesn't know about local
variables.

; store return address
STR R7, R6, #1

2023/12/10 26

Starting the Callee Function

x3F00

13

x3100
x4100
13
10

x4100

R6

return val
return addr
dyn link
a
b
return val
return addr
dyn link
a
b
w
x
y

2023/12/10 27

Ending the Callee Function

return y;

; copy y into return value

LDR R0, R6, #7

STR R0, R6, #0

; load the return address

LDR R7, R6, #1

; load the dynamic link

; (pops the activation record)

LDR R6, R6, #2

; return control to caller

RET

x3F00

13

40
x3100
x4100
13
10
20
30
40

x4100

R6

return val
return addr
dyn link
a
b
return val
return addr
dyn link
a
b
w
x
y

b = NoName(a,10);

; load return value
LDR R0, R6, #5
; store result into b
STR R0, R6, #4

2023/12/10 28

Resuming the Caller Function

x3F00

13
40
40

x4100

R6

return val
return addr
dyn link
a
b
return val

14-29

Example: LC-3 Code for ToUpper

/* Function ToUpper:

* If the argument is lower case,

* return its upper case ASCII value */

char ToUpper(char inchar)

{

int outchar = inchar;

if ('a' <= inchar && inchar <= 'z')

outchar = inchar - ('a' - 'A');

return outchar;

}

n Compile this function to LC-3 assembly
language.

ToUpper STR R7, R6, #1 ; save return addr

LDR R0, R6, #3 ; load parameter (inchar)

STR R0, R6, #4 ; initialize outchar

LD R1, neg_a ; load -'a'

ADD R1, R0, R1 ; inchar - 'a'

BRn FALSE ; br if inchar < 'a'

LD R1, neg_z ; load -'z'

ADD R1, R0, R1 ; inchar - 'z'

BRp FALSE ; br if inchar > 'z'

LD R1, neg_upper ; load -('a' - 'A')

ADD R0, R0, R1 ; inchar - ('a' - 'A')

STR R0, R6, #4 ; store to outchar

FALSE LDR R0, R6, #4 ; load outchar

STR R0, R6, #0 ; store in result

LDR R7, R6, #1 ; load return address

LDR R6, R6, #2 ; load dynamic link

RET

Run-time Stack: Stack frame

nConsider what has to happen in a function call:

lCaller must pass parameters to the callee.

lCaller must transfer control to the callee.

lCaller need to allocate space for the return value.

lCaller need to save the return address.

lCallee requires space for local variables.

lCallee must return control to the caller.

lCallee need to save the frame pointer of the caller

nSo, parameters, return value, return address, frame pointer, and local variables are

stored on the stack.

2023/12/10 30

Run-time Stack: stack-like nature of function calls

1 int main(void)
2 {
3 int a;
4 int b;
5
6 :
7 b = Watt(a); // main calls Watt first
8 b = Volt(a, b); // then calls Volt
9 }
10
11 int Watt(int a)
12 {
13 int w;
14
15 :
16 w = Volt(w, 10); // Watt calls Volt
17
18 return w;
19 }
20
21 int Volt(int q; int r)
22 {
23 int k;
24 int m;
25
26 :
27 return k;
28 }

Run-time Stack: frame pointer & stack pointer

2023/12/10 32

n We need some easy way to access the data in each

function’s stack frame and also to manage the

pushing and popping of stack frames.

n For this, we will use R5 and R6.

l R5 points to some internal location within

the stack frame at the top of the stack—it

may point to the base of the local

variables for the currently executing

function. We call it the frame pointer

(FP).

l R6 always points to the very top of the

stack. We call it the stack pointer (SP).

Real Solution: Run-time Stack

n Instead of allocating the space for local variables statically (i.e., in a fixed place in memory), the space is allocated once the function
starts executing.

n When the function returns to the caller, its space is reclaimed to be assigned later to another function.

n If the function is called from itself, the new invocation of the function will get its own space that is distinct from its other currently

active invocations.

n The simple part

l At the assembly level, a function is just a sequence of instructions that is called using a JSR instruction.

l The RET instruction returns control back to the caller.

n The stickier issues

l how arguments are passed

l how the return value is returned,

l and the allocation of local variables.

n The solution to these issues involves : the run-time stack.

n We need a way to “activate” a function when it is called. That is, when a function starts executing, its local variables must be allocated
somewhere in memory. There are many possible solutions, and here we’ll explore two options.

2023/12/10 33

Run-time Stack: Stack frame

2023/12/10 34

stack frame
points to the
base of the
local
variables for
the currently
executing
function.

Run-time Stack: Stack frame

2023/12/10 35

Run-time Stack: Stack frame

2023/12/10 36

Run-time Stack: Stack frame

2023/12/10 37

2023/12/10 39

2023/12/10 40

2023/12/10 41

